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Abstract. Some metallic quantities are calculated on the grounds of Tsallis generalized statistics: the
specific heat at constant volume, cV (T ); the chemical potential, µ(T ); the Pauli paramagnetic susceptibility,
χ(T ) and the Korringa constant, CK. First it is found that for a general value of q, the Sommerfeld expansion
series will exhibit both, odd and even terms, contrary to what is obtained if we use the Fermi-Dirac (FD)
statistics, where only even terms appear. It follows that: (i) the specific heat coefficient, γ, is q-dependent,
but the temperature dependence of cV remains linear, as in the FD case; (ii) the Fermi energy, EF, differs
from the chemical potential by a linear term in T , and not quadratic, as in FD, the same happening for
χ(T ); (iii) the Korringa constant is q-dependent, but not T -dependent. In the limit q → 1 the results of
FD statistics are recovered. Metallic thin films and multilayers exhibiting fractal surface structures are
possible systems where the present results could be tested.

PACS. 75.20.En Metals and alloys – 72.15.-v Electronic conduction in metals and alloys

1 Introduction
Since the turn of this century, starting with the work of
Drude, the study of metals have been one of the main
branches of research in condensed matter [1]. From the
simple but effective model of Sommerfeld, an astonishing
number of metallic effects have been predicted and ver-
ified experimentally [2]. These are calculated under the
assumption of validity of the Fermi-Dirac (FD) statistics
for the electron gas in a metal [1]:

f(E) =
1

eβ(E−µ) + 1
(1)

where β = 1/kBT . Using the Sommerfeld expansion, it can
be shown [1] that the chemical potential, µ(T ) differ from
the Fermi energy, EF, by a factor (kBT/EF)2 ≈ 0.000006
at room temperature in a typical metal, which allows re-
placing µ by EF in equation (1) in many practical situa-
tions.

From the distribution function one can calculate im-
portant metallic properties, like the specific heat at con-
stant volume, cV (T ), and the Pauli paramagnetic suscep-
tibility of the electron gas, χ(T ) [1,3]:

cV (T ) =
∂

∂T

∫ +∞

−∞
Eg(E)f(E)dE (2)

χ(T ) =
µB

2
∂

∂B0

{∫ +∞

−µBB0

g(E + µBB0)f(E)dE

−
∫ +∞

+µBB0

g(E − µBB0)f(E)dE
}

(3)
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where µB is the Bohr magneton, and B0 a external static
magnetic field. g(E) is the conduction electrons density of
states [1].

Another important metallic property, yet less common
in solid state textbooks, which also depends on the distri-
bution function is the spin-lattice relaxation rate [4]:

1
T1

=
CK

kB

∫ ∞
0

f(E)[1− f(E)]dE. (4)

Upon equation (1), at low temperatures, one can approxi-
mate f(E)[1− f(E)] ≈ kBTδ(E−EF) to obtain a famous
relation known as the Korringa law: 1/T1 = CKT [4]. This
expression relates the spin-lattice relaxation rate, 1/T1, to
the equilibrium temperature of the system, T . The factor
CK is called the Korringa constant, and is related to the
properties of conduction electrons in a metal. The mea-
surement of 1/T1 as a function of T has been a very pow-
erful tool in the investigation of electronic properties in
solids (see [5–7] for recent investigations).

The recent proposal of Tsallis [8] for the generaliza-
tion of Boltzmann-Gibbs statistics has successfully been
applied to a variety of situations, where nonextensivity or
long-range interactions are present, or still fractal bound-
ary conditions exist. Generalization is based on the en-
tropic form [8]:

Sq = kB
1−

∑
i p
q
i

q − 1
(5)

where q is the entropic index, and pi are probabilities sat-
isfying

∑
i pi = 1.
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Nonextensivity follows from equation (5). If A and B
are two independent physical systems, it can be shown
that the generalized entropy of the combined systemA+B
satisfies [9]:

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (6)

Superextensivity corresponds to q < 1, and subextensivity
to q > 1. Extensivity corresponds to the particular case
q = 1. The actual value of q is determined by the micro-
scopic dynamics of the system. A comprehensive recent
review can be found in [9].

Although by the present date over 340 papers have
been reported on the subject of generalized statistics [15],
to the best of the author knowledge, none concerns prop-
erties of electrons in metals. In usual metallic bulk samples
one can obviously expect the traditional Boltzmann-Gibbs
statistics to hold. However, in thin films and multilayers,
physical properties are by large determined by the surface
structure of these materials. Fractal patterns have been
recently observed in gold thin films [16], Ag-Co multilay-
ers, and even in simple magnetic metals (Fe, Co, Cr and
Ni) [17]. These are examples of possible systems where
the predictions of Tsallis statistics can be directly tested.
Theoretical developments concerning fractal structures in
metals can be also found in [18–20].

Following [21,22], according to Tsallis proposal, one
must replace the FD distribution function in equation (1)
by its generalized form:

fq(E) =
1

[1 + (q − 1)β(E − µ)]
q
q−1 + 1

(7)

where q is the same parameter appearing in the defini-
tion (5). By applying the generalized expression of expo-
nential function [8,21]:

ex = lim
q→1

[1 + (1− q)x]
1

1−q

one sees that equation (7) reduces to equation (1) in the
limit q → 1.

On the present paper we investigate the effect of fq(E)
on some well known metallic properties, namely, the spe-
cific heat, the chemical potential, the Pauli paramagnetic
susceptibility, and the Korringa constant.

2 Generalized Sommerfeld expansion

Figure 1a shows a plot of fq(E) for q = 1.2 and q = 1.05
for T = 4 K and EF = 5 eV, a typical value for a com-
mon metal [1]. Figure 1b shows the derivative of these
functions. There are three important features to be em-
phasized in these pictures: (i) as much as the FD function,
at low temperatures, fq(E) varies appreciably only in an
interval kBT within EF; (ii) although the functions do not
differ much from each other for different values of q, their
derivatives are very sensitive to the value of q, and di-
verge very quickly as q → 1; (iii) for a general value of

Fig. 1. (a) Generalized distribution function, fq(E), for q =
1.05 and q = 1.2; (b) derivatives of fq(E) from part (a). The
variation is strongly dependent on q, and is not symmetrical in
respect to the Fermi level.

q the derivative of fq(E) will not be an even function of
(µ−EF).

Property (i) warrants that any integral function like∫ +∞

−∞
H(E)fq(E)dE

where H(E) is well behaviored, can be expanded in
Sommerfeld series [1]. Property (ii) means that the terms
of the expansion will be dependent on the value of q and,
finally, property (iii) means that for a general value of
q there will be both, even and odd terms in the series,
contrary to what happens if we use the FD statistics,
where only even terms contribute. Having these features
in mind we obtain the generalized Sommerfeld expansion:∫ +∞

−∞
H(E)fq(E)dE = qa(q)

[∫ EF

0

H(E)dE+(µ −EF)H(EF)
]

+ q
∞∑
n=1

bn(q)(kBT )n
dn−1

dEn−1
H(E)E=µ

(8)

where:

a(q) =
∫ +∞

−∞

[1 + (1− q)x]
1

1−q

{[1 + (1− q)x]
1

1−q + 1}2
dx (9)
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Table 1. Numerical values for q and qa(q) (see text)

q a(q) qa(q)

1.2 0.828 0.994

1.1 0.905 0.995

1.05 0.949 0.996

and

bn(q) =
∫ +∞

−∞

xn

n!
[1 + (1− q)x]

1
1−q

{[1 + (1− q)x]
1

1−q + 1}2
dx. (10)

The function a(q) has been numerically integrated for
a few values of q. The results are shown in Table 1. One
notices that although a(q) varies approximately 14.5% in
the interval, the product qa(q) varies only about 0.2%,
and remains fairly close to 1. Therefore, one can make the
approximation qa(q) ≈ 1 in equation (8).

The precise way the value of q relates to the dimension
of a physical system (and the range of interactions which
may be present), remains an open question on Tsallis for-
malism. In practice, q is used rather as a “fitting param-
eter” to experimental data, and therefore must be deter-
mined to each system in separate. The range of values of q
for the present calculation has been chosen in accordance
to what has been observed in some other systems [9]. For
a general discussion on the q-dependence of specific heat
and magnetic susceptibility, see references [10,11]. For the
connections with fractality see [12–14].

3 Metallic observables
In this section we apply equation (8) to the calculation of
some metallic observables.

3.1 Specific heat and chemical potential

Replacing H(E) = Eg(E) on equation (8) one obtains
the internal energy density of the electron gas to second
order [1]:

u(T ) = u0 + {(µ−EF)g(EF)

+ qb1(q)(kBT )g(EF) + qb2(q)(kBT )2g′(EF)}EF

+ qb2(q)(kBT )2g(EF) (11)

where u0 is the energy density at T = 0. But since
qa(q) ≈ 1, the term between brackets vanishes for con-
stant electronic density [1]. Therefore one obtains:

u(T ) = u0 + qb2(q)(kBT )2g(EF) (12)

from which we get:

cV =
(
∂u

∂T

)
V

= γT ; γ = 2qb2(q)k2
Bg(EF) (13)

and

µ(T ) = EF

{
1− qb1(q)

(
kBT

EF

)
− qb2(q)(kBT )2 g′(EF)

EFg(EF)

}
.

(14)

Table 2. Numerical values for q, qb1(q) and qb2(q) (see text)

q b1(q) qb1(q) b2(q) qb2(q)

1.2 0.147 0.177 2.313 2.778

1.1 0.124 0.137 2.630 2.893

1.05 0.073 0.077 2.879 3.023

Table 2 shows numerical results for qb1(q) and qb2(q).
One sees that, as q → 1, qb1(q) → 0 and qb2(q) → π2/3,
recovering the results obtained from the usual Sommerfeld
expansion [1]. For a free-electron gas, at room tempera-
ture, the linear term in equation (14) can be estimated as
10−3, for q = 1.2, whereas the quadratic term will be of
order 10−5.

3.2 Pauli paramagnetic susceptibility

The Pauli paramagnetic susceptibility, χ(T ), can be ob-
tained applying equation (8) separately to n↑, the number
of “spins up” in a static magnetic field, and n↓, the num-
ber of “spins down”, and having in mind that, since for
a metal µBB0 � EF, one can expand g(EF ± µBB0) ≈
g(EF)± µBB0g

′(EF) [3]. The result is:

χ(T ) = χ(0)
{

1 + q(q − 1)b1(q)(kBT )
g′(EF

g(EF

+ qb2(q)(kBT )2

[
q

(
g′(EF)
g(EF

)
)2

−
(
g′′(EF)
g(EF)

)]}
(15)

where χ(0) = 2µ2
Bg(EF) is the value of χ at T = 0.

Again one notices that for a general value of q, the first
term of temperature correction will be linear in T , and
not quadratic, as in the usual Sommerfeld expansion. For
q = 1.2, in a free-electron gas at room temperature, the
linear term will be one order of magnitude larger than the
quadratic one. We also see that the FD result is recovered
in the limit q → 1.

3.3 Spin-lattice relaxation rate

Replacing equation (7) in equation (4), for the spin-lattice
relaxation rate, one obtains the generalized expression:

1
T1

= CKTζ(q, T ) (16)

where

ζ(q, T ) =∫ ∞
0

dx

2 + [1 + (1− q)(x− ε)]
q
q−1 + [1 + (1− q)(x− ε)]

q
1−q

(17)

with ε = EF/kBT . Although the temperature explicitly
appears in the expression of ζ, the numerical integration
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Fig. 2. Ratio of the Korringa constants obtained from the Tsallis statistics, CK(q), and FD statistics, CK for several values of
q. The line is only a guide to the eyes.

of equation (17) for ε varying from 20 to 1000 did not
show any deviation from the value ζ = 0.868, contrary to
what happens to its dependence with q. Therefore one can
write for a general value of q:

1
T1

= CK(q)T ; CK(q) = CKζ(q). (18)

Figure 2 shows the ratio CK(q)/CK for several values of q.
On the detail is shown how this ratio tends to 1 as q → 1.

4 Conclusions

Various metallic properties were investigated on the
framework of Tsallis generalized statistics. By deducing
a “generalized Sommerfeld expansion”, one finds that the
temperature dependence of the chemical potential and the
Pauli paramagnetic susceptibility exhibit a leading linear
term, what does not happen if we use the FD statistics.
The coefficient of the specific heat and the Korringa con-
stant, on the opposite, do not depend on T , but only on the
parameter q. The present results may possibly be tested
by measuring some of these properties, for instance, the
Pauli paramagnetic susceptibility in systems with metallic
surfaces presenting fractal structure [16,17].

The author acknowledges Prof. C. Tsallis for useful discussion.
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